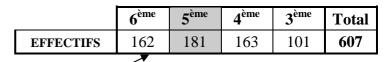
I. Effectifs et diagramme en bâtons

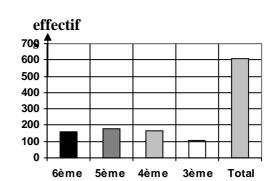
1. Effectifs

Le tableau ci-contre donne la répartition des *effectifs* des élèves dans un collège dont l'*effectif total* est de 607 élèves.



Exemple

Dans ce collège, l'effectif des 5^{èmes} est de 181 élèves:



2. Diagramme en bâtons (ou en barres)

On peut représenter ces effectifs par un *diagramme en bâtons* (ou en barres) : dans un diagramme en barres, la *hauteur de chaque barre* est proportionnelle à l'effectif qu'elle représente.

II. Fréquences et diagramme circulaire

1. Fréquences et pourcentages

Définition

fréquence =	<u>effectif</u>	
	effectif total	•

	6 ^{ème}	5 ^{ème}	4 ^{ème}	3 ^{ème}	Total
Effectifs	162	181	163	101	607
Fréquences	0,267	0,298	0,268	0,167	1

<u>Exemple</u> La fréquence des élèves de 3^{ème} dans ce collège est **0,167 environ** car $\frac{101}{607} \approx 0,167$

Définition

$$fréquence\ en\ \% = \frac{\text{effectif}}{\text{effectif total}} \times 100$$
.

_	6 ^{ème}	5 ^{ème}	4 ^{ème}	3 ^{ème}	Total
Effectifs	162	181	163	101	607
Fréquences (en %)	26,7	29,8	26,8	16,7	100

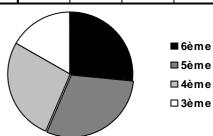
<u>Exemple</u> Le pourcentage de 4^{ème} dans ce collège est 26,8 % environ car $\frac{163}{607} \times 100 \approx 26,8$

2. Diagrammes circulaires

On peut représenter ces effectifs par un *diagramme circulaire* : dans un diagramme circulaire, la *mesure de chaque angle* est proportionnelle à l'effectif qu'il représente.

Mesure d'un angle =
$$\frac{\text{effectif}}{\text{effectif total}} \times 360$$
.

	6 ^{ème}	5 ^{ème}	4 ^{ème}	3 ^{ème}	Total
effectifs	162	181	163	101	607
Fréquences	0,267	0,298	0,268	0,167	1
Mesures (en degrés)	96	107	97	60	360



III. Moyenne arithmétique pondérée d'une série statistique

EXERCICE TYPE 1

Déterminer la taille moyenne des 10 personnes suivantes :

Taille (en m)	1,70	1,75	1,80	1,85	Total
Effectif	3	4	2	1	10

Calculs:

$$1,70\times3 + 1,75\times4 + 1,80\times2 + 1,85\times1 = 17,55$$

$$17,55 \div 10 = 1,755$$

Conclusion: La taille moyenne de ces 10 personnes est environ 1,76 m.

La taille des élèves est comprise

EXERCICE TYPE 2

Déterminer la taille moyenne des élèves de la classe :

Taille (en m)	[1,50;1,60[[1,60;1,70[[1,70;1,80[[1,80;2[Total
Centre	$(1,50+1,60) \div 2 =$ 1,55	$(1,60+1,70) \div 2 =$ 1,65	$(1,70+1,80) \div 2 = $ 1,75	$(1,80+2) \div 2 = $ 1,90	
Effectif	3	13	8	2	26

Calculs:

$$1,55\times3 + 1,65\times13 + 1,75\times8 + 1,90\times2 = 43,9$$

$$43.9 \div 26 \approx 1.69$$

Conclusion : La taille moyenne des élèves de la classe est *environ 1,69 m*.

IV. Médiane d'une série statistique

<u>Définition</u>

La *médiane* d'une <u>série ordonnée</u> est *une valeur* telle qu'il y ait *autant de valeurs inférieures* ou égales que de valeurs supérieures ou égales.

EXERCICE TYPE 3

Déterminer les médianes et les moyennes des séries de notes suivantes :

- de la série A : 13, 13, 20, 19, 18, 15, 15
- de la série B : **8**, **8**, **9**, **12**, **15**, **17**, **12**, **11**, **14**, **14**
- de la série C : 17, 14, 3, 16, 5, 17

<u>Remarque</u> Pour déterminer une médiane, il faut d'abord ordonner la série.

- série A : $13 \le 13 \le 15 \le |15| \le 18 \le 19 \le 20$. La médiane de cette série est 15.

3 notes

- série B : $8 \le 8 \le 9 \le 11 \le 12 \le 12 \le 14 \le 14 \le 15 \le 17$. La médiane de cette série est 12.

5 notes 5 notes

- série C : $3 \le 5 \le 14 \le 16 \le 17 \le 17$. La médiane de cette série doit être comprise entre 14 et 16.

Par convention, on prendra la valeur **15** pour *médiane* de cette série. 3 notes

Bilan:

	Série A	Série B	Série C
Médiane	15	12	15
Movenne	≈ 16.1	12	12

- *Remarques*: Deux séries peuvent avoir la même moyenne mais pas la même médiane (séries B et C).
 - Deux séries peuvent avoir la même médiane mais pas la même moyenne (séries A et C).

V. Quartiles d'une série statistique

Définition

Le 1^{er} quartile est la plus petite valeur Q_1 de la <u>série ordonnée</u> telle qu'au moins 25 % (ou un quart) des données sont inférieures ou égales à Q_1 .

Le $3^{\grave{e}me}$ quartile est la plus petite valeur Q_3 de la <u>série ordonnée</u> telle qu'au moins 75 % (ou trois quarts) des données sont inférieures ou égales à Q_3 .

EXERCICE TYPE 4

Déterminer le 1^{er} quartile et le 3^{ème} quartile de la série de notes suivante :

Remarques

- Pour déterminer une médiane, il faut d'abord ordonner la série.
- Pour chercher les quartiles, on partage la série en quatre groupes de même effectif.

1. Je range la série dans l'ordre croissant : $3 \le 6 \le 7 \le 8 \le 8 \le 10 \le 12 \le 14 \le 14 \le 17 \le 17 \le 19$.

3 notes 3 notes 3 notes 3 notes

2. Je compte le nombre de *n* valeurs : Il y a **12** valeurs.

3. Je divise *n* par 4 : $12 \div 4 = 3$

4. J'en déduis le rang du 1^{er} quartile : Le 1^{er} quartile est donc la 3^{ème} valeur.

J'en déduis le rang du 3^{ème} quartile : Le 3^{ème} quartile est donc la 9^{ème} valeur.

5. J'écris le 1^{er} quartile et le 3^{ème} quartile : $Q_1 = 7$ et $Q_3 = 14$

Remarque: La médiane de cette série est 11.

VI. L'étendue

<u>Définition</u> L'<u>étendue</u> d'une série est la différence entre les deux valeurs extrêmes de cette série.

EXERCICE TYPE 5

Déterminer l'étendue des séries A, B et C suivantes :

- de la série A : 13, 13, 20, 19, 18, 15, 15
- de la série B : 8, 8, 9, 12, 15, 17, 12, 11, 14, 14
- de la série C : 17, 14, 3, 16, 5, 17
- série A : 20 13 = 7. L'étendue de cette série est 7.
- série B : 17 8 = 11. L'étendue de cette série est 11.
- série A : 17 3 = 14. L'étendue de cette série est 14.